|
| 15: |
|
MINUS(n__0,Y) |
→ 0# |
| 16: |
|
MINUS(n__s(X),n__s(Y)) |
→ MINUS(activate(X),activate(Y)) |
| 17: |
|
MINUS(n__s(X),n__s(Y)) |
→ ACTIVATE(X) |
| 18: |
|
MINUS(n__s(X),n__s(Y)) |
→ ACTIVATE(Y) |
| 19: |
|
GEQ(n__s(X),n__s(Y)) |
→ GEQ(activate(X),activate(Y)) |
| 20: |
|
GEQ(n__s(X),n__s(Y)) |
→ ACTIVATE(X) |
| 21: |
|
GEQ(n__s(X),n__s(Y)) |
→ ACTIVATE(Y) |
| 22: |
|
DIV(s(X),n__s(Y)) |
→ IF(geq(X,activate(Y)),n__s(div(minus(X,activate(Y)),n__s(activate(Y)))),n__0) |
| 23: |
|
DIV(s(X),n__s(Y)) |
→ GEQ(X,activate(Y)) |
| 24: |
|
DIV(s(X),n__s(Y)) |
→ DIV(minus(X,activate(Y)),n__s(activate(Y))) |
| 25: |
|
DIV(s(X),n__s(Y)) |
→ MINUS(X,activate(Y)) |
| 26: |
|
DIV(s(X),n__s(Y)) |
→ ACTIVATE(Y) |
| 27: |
|
IF(true,X,Y) |
→ ACTIVATE(X) |
| 28: |
|
IF(false,X,Y) |
→ ACTIVATE(Y) |
| 29: |
|
ACTIVATE(n__0) |
→ 0# |
| 30: |
|
ACTIVATE(n__s(X)) |
→ S(X) |
|
The approximated dependency graph contains 3 SCCs:
{19},
{16}
and {24}.